Compact orbit spaces in Hilbert spaces and limits of edge-colouring models
نویسندگان
چکیده
Abstract. Let G be a group of orthogonal transformations of a real Hilbert space H. Let R and W be bounded G-stable subsets ofH. Let ‖.‖R be the seminorm onH defined by ‖x‖R := supr∈R |〈r, x〉| for x ∈ H. We show that if W is weakly compact and the orbit space R/G is compact for each k ∈ N, then the orbit space W/G is compact when W is equiped with the norm topology induced by ‖.‖R. As a consequence we derive the existence of limits of edge-colouring models which answers a question posed by Lovász. It forms the edge-colouring counterpart of the graph limits of Lovász and Szegedy, which can be seen as limits of vertex-colouring models. In the terminology of de la Harpe and Jones, vertexand edge-colouring models are called ‘spin models’ and ‘vertex models’ respectively. By relaxing the condition that W is bounded, also the compactness of the space of L graphons introduced by Borgs, Chayes, Cohn, and Zhao follows.
منابع مشابه
Compact orbit spaces in Hilbert spaces and limits of edge-coloring models
Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of ...
متن کاملOrbit Spaces Arising from Isometric Actions on Hyperbolic Spaces
Let be a differentiable action of a Lie group on a differentiable manifold and consider the orbit space with the quotient topology. Dimension of is called the cohomogeneity of the action of on . If is a differentiable manifold of cohomogeneity one under the action of a compact and connected Lie group, then the orbit space is homeomorphic to one of the spaces , , or . In this paper we suppo...
متن کاملMultipliers of continuous $G$-frames in Hilbert spaces
In this paper we introduce continuous $g$-Bessel multipliers in Hilbert spaces and investigate some of their properties. We provide some conditions under which a continuous $g$-Bessel multiplier is a compact operator. Also, we show the continuous dependency of continuous $g$-Bessel multipliers on their parameters.
متن کاملShift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کاملLocalization operators on homogeneous spaces
Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 52 شماره
صفحات -
تاریخ انتشار 2016